NAME Robotika kolaboratiboko plataforma, KukaLWR4+, UR5, gailu haptikoak eta laneko ingurunearen 3D monitorizazioa dituena

DESCRIPTION

KUKA light weight robot (LWR) robot kolaboratiboa Kuka LWR izan zen indar-sentsoreak junturetan txertatuak zituen lehenbiziko robota. Ezaugarri horri eta diseinu arin eta biribilduari esker, robot kolaboratiboa izateko baldintzak betetzen ditu. Indar-sentsoreen bidez, robotek "sentitu" egiten dute beren egituran zehar izaten den kontaktu oro; hala, abiadura moteldu egin dezakete, edo gelditu. Txertatuak dituen indar-sentsoreei esker, beste ezaugarri hau ere badu robot horrek: grabitate-konpentsazioko moduan ipin daiteke, eta eskuz mugitu (adibidez, berari ibilbide bat erakusteko) eta, nahi izanez gero, mugimendu horren exekuzioa gorde daiteke, automatikoki errepikatzeko. Hartara, oso erraz programatu daiteke robota, robotikako aditurik gabe ere. Kuka iiwa robotaren aurrekoa da. Kuka LWRk 7 kg-ko karga-ahalmena du (payload-a). Universal robot UR5 Merkatu-kuota zabala eskuratu dute Universal Robots-eko robotek, prezio/kalitate erlazio ona baitaukate. Gainera, konfigurazioan eta programazioan dituzten hobekuntzei esker, erabilerrazagoak dira, ohiko robot industrialekin alderatuta. Beste abantaila bat: indar-sentsore bat daukate azken artikulazioan; horri esker, egiten ari diren eragiketaren atzeraelikadura dute. Gailu haptikoak Robot haptikoak gailu mekatronikoak dira, eta ukimena transmiti dezakete ingurune birtual batetik gizaki batengana, eta alderantziz. Pertsona batek objektu birtualak "uki" ditzake, haien testura sentitu eta haiekin interakzioan jardun errealitate birtualeko ingurunean edo mundu birtual batetik. Gailu haptikoak indar-atzeraelikaduraren bidez (feedbacka) itzultzen du interakzio horien emaitza. Mundu birtual batetik indar-seinaleak berrelikatzeko ahalmena inguruen errealetara ere eraman daiteke. Horrelakoetan, teleoperazioa izaten da aplikaziorik ohikoena. Maisu-esklabo kontrol-estrategia baterako erabil daiteke robot haptikoa (maisua, gailu haptikoa; esklaboa, urrutitik gidatutako robot bat). Sailean erabilgarri dauden hiru gailu haptikoen modeloak aztertuko ditugu hemen. Mahaigaineko modeloak dira hiru gailuak: Phantom Omnik 6 DoF ditu; Novint Falconek 3 DoF, eta Force dimension Omega 7k, berriz, 7 DoF.

FIELDS OF APPLICATION

Advanced manipulation with robots

Flexibility for robotic applications

Manufacture and assembly of components by robots

Quality control with robots

MOST OUTSTANDING EQUIPMENT AND COMPONENTS

  • Force dimension Omega 7

  • KUKA light weight 4 robot (LWR4) – collaborative robot

  • Novint Falcon

  • Phantom Omni

  • Universal robot UR5

SERVICES OFFERED BY THE ASSET

Automatic trajectory generation to avoid collisions

Advanced parts manipulation with robots. Safety robot systems include strategies to avoid and prevent collisions. Different techniques can be implemented to reach this objective: from detecting the collision and stop the robot, to dynamically calculate the trajectory free of collisions during the execution time.

Bin Picking or Kitting applications

Advanced parts manipulation with robots. Combined 3D vision techniques with location, detection, segmentation and matching are integrated in the robot manipulation to enhance complex bin picking applications. With the implementation of this capability, the kitting can be implemented by using the own robot table or an additional support.

Collaborative Human-robot interaction with 3D workspace monitoring

Advanced parts manipulation with robots. Collaborative workspace implies force signals in all robot joints (or in the robot surface) and the workspace monitoring by redundant systems (vision, laser and electro-mechanic devices) Friendly programming, ergonomic and dynamic trajectory are also included tool that improve the functionality of the collaborative cell.

Easy programming of robotic cells

Flexibility in robotic applications. This tool facilitates the robot programming by not robot experts by using the information of the robot workspace and the involved parts in the manipulation.

Force/Compliance based robot guiding

Flexibility in robotic applications. Force and torque (3 to 6 axes) should be measured and controlled depending on the use case to be automated. Located on the end-effector, these sensors allow the compliance guiding of the robot.

Parts dimensional control with robots and 3D vision systems

Quality control with robots. In machining and manufacturing processes is fundamental to ensure que final result of the part. Artificial vision systems allow the automatic measurement of the part by using 3D matching strategies. In some cases, the manipulation of the part is mandatory, in order to access to all the part sides, then the use of a manipulator is justified.

Quality control with robots and 3D vision systems

Quality control with robots. Different parameters can be defined as quality control parameters, being possible to include detection by using vision systems or programming test to be executed by the robot. The data obtained from these test is analyzed in the ROS framework developed by Tecnalia. Additionally, in some cases, the manipulation of the part is mandatory, in order to access to all the part sides, then the use of a manipulator is justified.

Robotic components manipulation and assembly.

Manufacturing and assembly performed by robots. Automatic assembly can be used in a large range of processes, being needed to analyze each case to define the complexity of the automation itself. In some cases the automation is a solved problem, but in other cases, it is needed to develop an innovative solution.

Robotic deburring

Manufacturing and assembly performed by robots. The automation of the deburring process includes the manipulation of the tools and parts involved in the process, the burr detection (by using artificial vision systems), quality control of the final result and the data analysis of all the signals in process.

Robotic drilling

Manufacturing and assembly performed by robots. The automation of the drilling operation implies to deal with: manipulation of the tool and involved parts, quality control of the hole, clamping force to avoid dust in the parts interface, guide holes and part-references identification, improvements in the process and data analysis. All those are included in Tecnalia Know-how.

Robotic screwing and tightening

Manufacturing and assembly performed by robots. The tightening of threaded parts requires of flexible robotic devices and control strategies, being in some cases necessary to include force Feedback. It is also included the screwing application, including the parts manipulation and the quality control of the operation.

Sealant application with robots

Manufacturing and assembly performed by robots. The automation of the sealant applications depends on the specific process (sealant interface, parts with sealant, buttons or sealant cords…), then the robotic operation will manage the specific requirements for the operation with: manipulation of the tool and involved parts (sealant, gripper end-effector…), references in the part and data analysis of the complete operation including the final result of the sealant applied.

Teleoperation of robots

Flexibility in robotic applications. This asset can be used in master-slave control configuration. This means this robot can be used in remote sites on in environments dangerous for humans. Different control strategies can be implemented from remote visualization to include force feedback by using haptic devices.

Vision-based parts detection and localization for robot guiding

Flexibility in robotic applications. Experience in several techniques and configurations of artificial vision systems (stereo vision, structured light, laser scanning, tags detection, 2D and 3D detection and matching… ) is available to been applied according the parts requirements and robot working conditions.

ENTITY MANAGING THE ASSET

ENTITY MANAGING THE ASSET
FUNDACIÓN TECNALIA RESEARCH & INNOVATION
Contact person:
Karmele Florentino
karmele.florentino@tecnalia.com